A New Self-stabilizing Maximal Matching Algorithm

نویسندگان

  • Fredrik Manne
  • Morten Mjelde
  • Laurence Pilard
  • Sébastien Tixeuil
چکیده

The maximal matching problem has received considerable attention in the selfstabilizing community. Previous work has given different self-stabilizing algorithms that solves the problem for both the adversarial and fair distributed daemon, the sequential adversarial daemon, as well as the synchronous daemon. In the following we present a single self-stabilizing algorithm for this problem that unites all of these algorithms in that it stabilizes in the same number of moves as the previous best algorithms for the sequential adversarial, the distributed fair, and the synchronous daemon. In addition, the algorithm improves the previous best moves complexities for the distributed adversarial daemon from O(n) and O(δm) to O(m) where n is the number of processes, m is the number of edges, and δ is the maximum degree in the graph. Key-words: Distributed systems, Distributed algorithm, Self-stabilization, Maximal matching, Complexity ∗ University of Bergen, Norway, {fredrikm,mortenm}@ii.uib.no † University of Iowa, USA, [email protected] ‡ LRI-CNRS UMR 8623 & INRIA Grand Large, Université Paris Sud, France, [email protected] Un Nouvel Algorithme Auto-stabilisant pour le Mariage Maximal Résumé : Le problème du mariage maximal a reçu une attention considérable de la part de la communauté de l’auto-stabilisation. Les travaux précédents ont proposé des algorithmes auto-stabilisants pour résoudre le problème à la fois dans le cas d’un démon non-équitable, équitable, distribué, séquentiel, et synchrone. Dans cet article, nous présentons un algorithme auto-stabilisant pour ce problème qui unifie toutes les approches précédentes au sens où sa complexité en nombre de pas de calcul est identique à la meilleure complexité connue pour les démons séquentiel non-équitable, distribué équitable, et synchrone. En outre, l’algorithm améliore la meilleure complexité connue pour le démon non-équitable distribué de O(n) et O(δn) à O(m), où n est le nombre de processus, m le nombre d’arêtes, et δ le degré maximum du graphe. Mots-clés : Systèmes distribués, Algorithme distribué, Auto-stabilisation, Mariage maximal, Complexité Self-stabilizing Maximal Matching 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Silent Self-Stabilizing 1-Maximal Matching Algorithm in Anonymous Networks

We propose a new self-stabilizing 1-maximal matching algorithm which is silent and works for any anonymous networks without a cycle of length of a multiple of 3 under a central unfair daemon. The 1-maximal matching is a 2 3 -approximation to the maximum matching, and expected to get more matching pairs than a maximal matching, which only guarantees a 1 2 -approximation. The time complexity of t...

متن کامل

An Anonymous Self-Stabilizing Algorithm for 1-Maximal Matching in Trees

We present an anonymous self-stabilizing algorithm for finding a 1-maximal matching in trees, and rings of length not divisible by 3. We show that the algorithm converges in O(n) moves under an arbitrary central daemon.

متن کامل

Self-Stabilizing Distributed Algorithm for Strong Matching in a System Graph

We present a new self-stabilizing algorithm for finding a maximal strong matching in an arbitrary distributed network. The algorithm is capable of working with multiple types of demons (schedulers) as is the most recent algorithm in [1, 2]. The concepts behind the algorithm, using Ids in the newtork, promise to have applications for other graph theoretic primitives.

متن کامل

A self-stabilizing algorithm for maximal matching in link-register model in $O(n\Delta^3)$ moves

In the matching problem, each node maintains a pointer to one of its neighbor or to null, and a maximal matching is computed when each node points either to a neighbor that itself points to it (they are then called married), or to null, in which case no neighbor can also point to null. This paper presents a self-stabilizing distributed algorithm to compute a maximal matching in the link-registe...

متن کامل

The Time Complexity of Hsu and Huang's Self-Stabilizing Maximal Matching Algorithm

The idea of self-stabilization was introduced by Edsger W. Dijkstra in 1974 [1]. Self-stabilizing algorithms enable systems to be started in an arbitrary state and still converge to a desired behavior. In this letter, we discuss the time complexity of the self-stabilizing algorithm proposed by Hsu and Huang in [2], which finds a maximal matching in a network. This algorithm is the first self-st...

متن کامل

A self-stabilizing algorithm for maximal matching in link-register model in $O(nΔ^3)$ moves

In the matching problem, each node maintains a pointer to one of its neighbor or to null, and a maximal matching is computed when each node points either to a neighbor that itself points to it (they are then called married), or to null, in which case no neighbor can also point to null. This paper presents a self-stabilizing distributed algorithm to compute a maximal matching in the link-registe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 410  شماره 

صفحات  -

تاریخ انتشار 2007